Grenob Le)l H'P ‘ Ul‘livel'Sité #

Joseph Fourier

/ ’ GRENOBLE

Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique
option Graphics Vision and Robotics

Learning Based Approach for Online
Lane Change Intention Prediction

Puneet KUMAR

20" June, 2012

Research project performed at E-Motion Team, Inria, France

Under the supervision of:
Dr. Christian LAUGIER (christian.laugier @inria.fr), Inria
Dr. Mathias PERROLLAZ (mathias.perrollaz @inria.fr), Inria
Stephanie LEFEVRE (stephanie.lefevre @inria.fr), Inria

Defended before a jury composed of:
Prof. James CROWLEY
Prof. Remi RONFARD
Prof. Marie-Christine FAUVET
Dr. Alexandros MAKRIS

June 2012

Abstract

Predicting driver’s behaviors is a key component for future Advanced Driver
Assistance Systems (ADAS). In this thesis, a novel approach based on Support
Vector Machine (SVM) and Bayesian filter (BF) is proposed for online lane change
intention prediction. The approach uses the multiclass probabilistic outputs of the
Support Vector Machine as an input to the Bayesian filter, and the posterior output
of the Bayesian filter is used for the final prediction of lane changes. A particle
filter based lane tracker integrated with a Lexus experimental platform is used for
real-world data acquisition for the purpose of training and testing. Data from dif-
ferent drivers on different highways were used for the robustness evaluation of the
overall approach. In-depth analysis of the proposed approach is also done and pre-
sented. The proposed approach is able to predict driver’s intention to change lane
1.3 seconds (average) earlier with maximum prediction horizon of 3.29 seconds.

Résumé

La prédiction de I’intention des conducteurs ouvre la voie a de nouveaux systémes
d’aide a la conduite. Dans ce contexte, ce document propose une nouvelle approche
de prédiction de I’intention de changement de voies, basée sur 1’utilisation com-
binée d’un SVM (Support Vector Machine) et d’un filtre Bayésien. La distribution
de probabilités sur les trois classes possibles a la sortie du SVM (changement a
droite, changement a gauche, pas de changement) est utilisée en entrée d’un fil-
tre Bayésien qui assure la cohérence temporelle de 1’estimation. La sortie du fil-
tre fournit la prédiction finale. Ce rapport présente une étude en profondeur de la
méthode proposée, ainsi que son évaluation expérimentale. Les tests et 1a validation
sont réalisés a I’aide de données routieres réelles acquises par un véhicule instru-
menté. Un algorithme de suivi de marquages routiers, basé sur un filtre particulaire,
est utilisé pour estimer le positionnement relatif du véhicule par rapport a la voie,
cette information étant utilisée par le systeme de prédiction d’intention. Les pre-
miers résultats sont encourageants puisque la manoeuvre est prédite en moyenne
1,3 secondes en avance, et jusqu’a 3,29 secondes. D’autre part, la robustesse est
validée en considérant des conducteurs différents.

Contents

Abstract
Résumé
1 Introduction
1.1 Motivation
1.2 Background
1.3 Advanced Driving Assistance Systems
1.4 Problem Statement
1.5 Contributions
1.6 ThesisQutline
2 State of the art
2.1 Introduction
2.2 Discriminative learning based approaches . .
2.3 Generative learning based approaches
2.4 Other Approaches
3 Proposed Approach and Discussion
3.1 Addressing the problem
3.2 Experimental platform for real data generation
3.3 Why Vision and IMU based lane tracker? . .
34 Overall Approach
4 Implementation
4.1 The Lane Tracker
4.2 Multiclass Probability Estimates using SVM .
4.3 Bayesian filter to reduce false alarms
4.4 Detailed Overall Approach
S Results and Discussion

5.1
5.2

Terminologies and Evaluation Metrics
Results withSVM

5.3 Results with combination of SVM and Bayesian filter

10
12

13
13
15
16
16

19
19
20
26
28

5.4 Robustness Evaluation 35

5.5 Finding the best parameters Lo 36
5.6 Effects of the size of the trainingdata. 39
6 Conclusions and Future Work 41
6.1 Conclusions e 41
6.2 Future Work 41
Bibliography 43

Y

1
Introduction

1.1 Motivation

Imagine a world with no road accidents. Every year millions of road accidents are witnessed
costing millions of human lives and huge economic loss. A study by World Health Organization
[19] shows that almost 1.2 million people died globally as a result of road accidents in the year
2000. Another study by [11], as shown in figure 1.1, found that out of three major factors
causing road accidents such as: driver factors, vehicle factors, and roadway factors, 57 % of the
road accidents are solely due to the driver factors. Therefore, we can say that road accidents
are serious global issue caused mainly due to driver’s inability to understand the situation and
the surroundings in a correct way so as to take right decisions at the right time to avoid road
accidents. It is not possible to train all the drivers in the world in a way to decrease the driver
factors of road accidents. Therefore, ADAS (Advanced Driving Assistance System) can help
drivers to understand the traffic situation in a better way, assist or take necessary actions to make
driving comfortable, improve the traffic flow, limit energy consumption, and avoid accidents or
mitigate their consequences. For example, predicting in advance the behavior of a vehicle at
intersection or predicting whether a vehicle on highway will go for a lane change or not can
help a driver to understand the situation in a better way to avoid accidents. Such perception and
understanding can further be integrated with other path planning or collision avoidance systems
to make futuristic autonomous vehicles that can replace a driver and drive on their own instead
of assisting a driver.

This thesis is situated within the context of future Advanced Driving Assistance System
with prime focus on discussing and developing algorithms for intention prediction in real
time using Machine Learning techniques. Further sections of this chapter discusses different
technologies involved in ADAS, give better description to the problem addressed in this thesis
and brief about the contributions made.

1.2 Background

Since the 80’s, European Commission, DARPA and other organizations worldwide have
been funding projects on developing intelligent vehicles and we have witnessed many advance-
ments in this field. Nowadays many big automotive companies e.g. BMW, Volkswagen, Toyota

Roadway Driver

Vehicle

Figure 1.1 — Different Factors on road accidents

(a) Stanford’s Car (b) CMU’s Car (c) MIT’s Car

Figure 1.2 — Autonomous Vehicles participated to DARPA challenge

etc. have started to test their driverless car systems. The autonomous cars demonstrated by
many teams in DARPA Urban challenge (2007) show what our future cars could look like (Fig-
ure 1.2). Recently, on June 2011, Nevada Legislature in USA passed the first law in the world
to authorize the use of autonomous cars on road, another big milestone in the future of AGVs
and presents an example of the level of advancements that has been achieved in this field. Al-
though, we still don’t have a fully autonomous vehicle capable of fulfilling real time human
needs, Advanced Driving Assistance Systems (ADASs) comes to rescue and bring us closer to
our needs. ADASs are now available on many advanced cars for public use and has witnessed
great advancements in recent years because of the advancements in computational capabilities
and sensor technologies. The purpose of ADAS is to assist drivers driving the car in order to
make their driving easier and safer.

1.3 Advanced Driving Assistance Systems

As stated earlier, the purpose of ADAS is to assist human drivers driving the car in order
to make driving safer and easier. In other words, these automated systems take over partly or
entirely the driving task to reduce the mental and physical workload, and to compensate for
limitations of the drivers. To this end, an ADAS has to perceive the environment, analyze it,
and then either inform the driver or warn the driver or take necessary actions.

2

1.3.1 Existing ADAS

Existing ADASs are very useful in driving scenarios and are used worldwide, but most of
these systems doesn’t have full control over the driving of the car and therefore can be overruled
by the human drivers. There are many ADASSs available in the market for personal use. Here
are examples of some of the most important existing advanced driving assistance systems.

Adaptive Cruise Control (ACC)

ACC is an extension of a conventional cruise control system that uses radar or laser sensors
to perceive the distance of the vehicle in front of it in the same lane in order to automatically
accelerate or decelerate to maintain a safe distance from the vehicle. It ensures that the gap
between the cars is sufficient to avoid accidents. ACC is also known as longitudnal support
system because it concerns the driving task in the forward direction. The functionalities of
ACC can be splitted into three major parts: the ACC controller that computes how the vehicle
should accelerate or deaccelerate, the longitudinal control that manages the actuator systems
to achieve the desired acceleration or deacceleration computed by the ACC controller, and the
human-machine interface enabling the driver to operate, supervise and reclaim control when
necessary [24].

Automatic Parking System (APS)

The purpose of APS is to enable vehicles to drive into the parking places autonomously.
APS was first experimentally demonstrated in the mid 90’s by INRIA [21] using the concept
of Localization-Planning-Execution cycle to reach a specified location of the car relative to its
environment. Nowadays, various companies are working on integrating the garages with the
required technology and sensors to communicate with the APS enabled cars for the purpose
of guidance, planning, and control. These systems are of great demand as they save time and
space by optimized placement of the cars in the garages.

Blind Spot Information System (BLIS)

Blind spot is an area in the vicinity of the vehicle that cannot be directly observed by the
driver. To observe this area a driver has to make extra efforts e.g. turning head, adjusting mirrors
etc. Sometimes this area is not at all visible. The BLIS is a sensor or camera-based system that
provides visual information to the driver about any object (vehicles, pedestrians, or cyclists)
in vehicle’s blind spot which in turn helps the driver to avoid accidents. This system is also
considered as a lane change assistant (LCA) system.

Lane Departure Warning (LDW)

LDW is a camera, laser, and infrared sensors based system that can recognize lane markings
and can warn a driver using visual, audio or vibrational warnings when a driver begins to leave
its lane without using the turning signal. The other form of LDW, known as Lane Keeping
System (LKS), has higher level of automation and can automatically take steps to ensure that
the vehicle stays in its lane. These systems are highly useful in highway scenarios and can avoid
many accidents.

Collison Avoidance System (CAS)

The Collision Avoidance System is an active safety system, which works in the background
and tries to prevent accidents whenever the situation becomes too critical. To avoid a collision,
it can override the driver’s actions and take control of the lateral and longitudinal maneuvering
of the vehicle [24]. These systems use database of information about the weather and traffic
conditions along with sensors to better understand the situation.

1.3.2 Future ADAS

Future ADAS refer to more sophisticated, automated, and advanced ADASs that can under-
stand and assess the traffic scenarios in a much better way to avoid accidents and make driving
safer and comfortable. They are supposed to address the limitations of existing ADAS. Catego-
rizing future ADAS completely at this stage will be difficult because we still don’t have a clear
picture of how a future ADAS will look like, but we can talk about some of the technologies that
it will be integrated with. A future ADAS can have capabilities of 3D maps for planning, risk
assessment for emergency braking, driver monitoring systems to monitor the state of a driver,
lane change prediction system to predict in advance whether a vehicle will take a lane change
or not, generate future trajectories of other vehicles on road, capabilities to override drivers
control etc. Other features available with these technologies may be the availability of vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, precise geographic infor-
mation system (GIS) for every road network, highly accurate GPS, much advanced and precise
sensors, good processing power, communication of vehicles with live weather conditions, etc.
There can be many other capabilities associated with future ADASSs.

1.4 Problem Statement

This thesis is focused on discussing and developing algorithms for lane change intention
prediction on highways in real situation. Lane change intention system is part of future ADAS
or future autonomous vehicles. The problem is to predict in advance whether a vehicle under
consideration will make a lane change or not. If yes, then which lane change, left lane change or
right lane change. In this work, a complete lane change maneuver is defined as the segment of a
vehicle trajectory that intersects with the curve that defines the lane markings and the instant of
lane change is the time at which the vehicle trajectory and the lane curve intersect as depicted
in figure 1.3. Mathematically, a vehicle trajectory can be defined by the deterministic function:

2 2
dx, dy, d°x dy()) (L.1)

®:0(0) = (300,50, 5 0. 50, 50, 5

Where the parameters of the function ® represent the longitudinal position, lateral position,
longitudinal velocity, lateral velocity, longitudinal acceleration and lateral acceleration of the
vehicle respectively [1]. If we define a lane curve as the function ®(x,y), then the trajectory

4

Lane Markings
—\—— Left Lane Change
Maneuever

Lane Change
Maneuver

‘ Instant of Lane
7 Change

Figure 1.3 — Lane Change Scenario

segment during the time [t;,#,] is a lane change trajectory segment, iff:

dy, . d*x . d%

drg € [l] ,tz] : @(x,o,yto) = CI)()C(Z‘()),y(l‘())7 d—x(t()) (l‘())7 %(t()), %(l‘o)> (1.2)

dt " dt

In this context, the problem is to:
— Predict the lane change intention at time ¢ < ty, i.e. predict lane change intention before
it actually happens and also increase the prediction horizon.
— Differentiate a left lane change from a right lane change.
— Use real dataset for the evaluation purpose.
— Minimize false alarms (false prediction of lane changes) resulting due to the limitations
of the sensors (camera, odometer), algorithms, and constraints of the real time scenario.

1.5 Contributions

Following are the contributions of this thesis:

1. Proposed a new approach based on the combination of multiclass SVM probability esti-
mate and Bayesian filter to address the problem of lane change intention prediction for
real-world data.

2. The approach is able to predict lane change intentions in advance in all the situations
tested in the real dataset collected using a Lexus experimental platform. The average
precision of the approach is 0.7154 and recall is 1 when tested on 69 lane changes.

3. The prediction horizon in this approach is up to 3.29 seconds with average prediction
time of 1.3 seconds.

4. The approach is able to differentiate between left lane change and right lane change.

1.6 Thesis Outline

Chapter 2 reviews the related work, chapter 3 discusses the different aspects and constraints
of the problem and then proposes an approach to solve the lane change prediction problem
within the discussed constraints. Chapter 4 talks about the implementation details of the pro-
posed approach and chapter 5 presents the results along with an in-depth analysis of the ap-
proach. Chapter 6 concludes and outlines future work.

92
State of the art

2.1 Introduction

This thesis is focused on developing an algorithm for driver intention prediction for Ad-
vanced Driving Assistance System (ADAS) using discriminative learning based approach. Be-
fore moving further to develop the algorithm, this chapter is being introduced to give an insight
about the current research advancements in the fields related to the problem addressed in this
thesis.

The term Intention prediction itself has different interpretations and has been addressed
by different researchers worldwide in different ways. Different terminologies such as: behavior
prediction, situation assessment or prediction, intention prediction etc., represents the same
type of problems. The terminologies varies from problem to problem and from researchers to
researchers based on their interpretations but the core of the approach to the solution of these
problems is almost the same. Different examples of these problems are: predicting whether
a driver will take a lane change or not, predicting whether a vehicle is compliant or violent,
predicting whether a vehicle under consideration will apply break or not, etc.

All these problems of ADAS are mainly addressed using machine learning techniques com-
bined with some filtering or rule based techniques. Based on different works by different re-
searchers and the scope of this thesis, there are mainly three categories in which the work
of intention or behavior or situation prediction can be divided: Discriminative learning based
approaches, Generative learning based approaches and Other approaches.

2.2 Discriminative learning based approaches

Discriminative approaches classify driver intention by direct mapping between input and
output without explicitly modelling the underlying distribution of the variables. The relation-
ship between variables is not visualizable in this case. Some of the examples of discriminative
learning based techniques are Support Vector Machines (SVMs), Logistic regression, Neural
Networks, Regularization Networks etc.

A popular work on lane change detection was proposed by [12]. The problem is addressed
using a discriminative classifier, known as Support Vector Machine (SVM), to classify lane
changes. The feature vector in this approach is formed using the variances of the features
(speed, steering angle etc.) to form an input vector in a short duration of time. Variance is used

/" LaneTracking O / HeadMotion)/ CAN busdata

—) | ||
et Fillor Y &

Ler= Marking Detectiog

B,

i

Figure 2.1 — Lane change intent analysis system flow chart proposed by [13]

because it captures changes which is critical to learn specific pattern. To find variances, overlap-
ping and non-overlapping subwindow approaches are used. In both approaches, subwindows
are created and variance is calculated for each subwindow of the input vector. It finally is con-
catenated to form the input feature vector of SVM for training and testing purposes. Authors
tried many combinations of feature sets, window sizes, and overlapping vs. non-overlapping
approaches to evaluate their proposed approach and claimed to get best results with 97.9%
recognition accuracy with overlapping approach when used with features set consisting of all
the lane positions. They also claim to get detected 87% of all true positives within 0.3 seconds
of the start of the maneuver.

In [13], a sparse Bayesian classifier based discriminative learning approach for lane change
intent analysis was proposed using lane position estimator, vehicle parameter estimator and
driver head motion information. The flow chart of this approach is shown in figure 2.1. The
idea here is to use time series data describing vehicle’s surrounding, the driver’s head motion
and vehicle’s internal state to create a feture vector for classification. Vehicle’s surrounding
in case of lane change detection is mainly consisted of lane information. The lane tracking
system was used to get the lane information. This system mainly uses Steerable filter based
lane detection, parabolic model of the road, and Kalman filter based lane tracking system. The
Kalman filter uses lane detection information along with steering angle and wheel velocity from
the CAN bus of the vehicle to update the state vector consisted of lane position, lane heading,
lane curvature, lane width etc. The basic idea behind the head motion estimator used by the
authors is to find the interframe head motion to construct the motion vector to identify head
movements in order to find out if the driver is looking at the mirror or the surrounding while
performing a lane change. On top of this a Sparse Bayesian classifier is used to classify lane
change intentions. The results of this work showed that the inclusion of the driver’s state (head
motion) improves the prediction horizon.

The extension of the work by [13] proposed by [15] uses Relevance Vector Machine (RVM),
a Bayesian extension of SVM, based discriminative classifier for lane change prediction. The
framework used by the authors is shown in figure 2.2. It used ACC (Adaptive Cruise Control

8

Vehicle Sensing Signal Extraction Feature Selection Training

ACC Radar —_ —]
’ sensor signals, — — Feature
e.g., Relative Speed VQ“:’ ‘Edfl
e.g. Hea
/
— Motion
/ » Head Camera - B
S ' 'f ___/"— = Histogram ———— Training Examples
Lane Camera —_— 1 . |rimewindow Feature
of Signal Data Processing
_{+ Vehicle Parameters J
— — c
2 Off-line 5
— . 4 Discriminative g
Side-Warning Radar ~——— E Classifier Training %
@
: = £
ete. £ %
LW t L — 3
Prilntended Lane Change at Time t+ 5): o Real-Time Olassifier
¥ olt)= ;- @ (e ;/ r ponnitie parameters
- - Wy, @ s
Intent Prediction Valth——" - I
and Evaluation Intent i5(t) = 1ly,t) > 1] ¢ t45

Classification

Figure 2.2 — Overview of Real-time Intent Detection System by [15]

radar), LDW (Lane Departure Warning Camera), SWA (Side Warning Assist) radars, and head
tracking camera for the purpose of data collection. The dataset collected for the training is
used offline to train a discriminative classifier (RVM) to get the trained model and this trained
model is then used in real time to generate a lane change probability score. The feature vector
constructed is of approximately 500 dimensions consisting of time series sensor data from the
vehicle. The results of the proposed approach showed 80 percent detection rate but many false
positives. To overcome false positives a multi-suppression technique is used which considers
the fact that consecutive detection arises from the same intention. This is valid in a sense that
the data is generated using sliding window approach, so a large set of data represents the same
intention and each data point is very similar to its successive data point so the classification
result should be similar until there is remarkable change in the input data which occurs when
there is change in intention. This approach was able to detect lane changes upto 3 seconds in
advance from the start of the maneuver mainly due to the head tracking camera.

Another work by [3] dealt with intentions at road intersections and considered two types of
on-road agents: dangerous and harmless. The idea is to find whether a vehicle under considera-
tion, called “’suspicious” vehicle, is harmless or dangerous for the ’host” vehicle. The approach
in this work uses discriminative binary classification along with Bayesian filtering (BF) to clas-
sify agent intentions. The classifier used is Support Vector Machine (SVM) with radial basis
kernel function. The output of the classifier is fed to a Bayesian filter with prior as the beta dis-
tribution over the probabilities of an agent being harmless and a binomial likelihood function.
Finally a threshold detector is used to get the final classification result. A discounted factor is
also used at the update step of Bayesian filter, called discounted BF, in order to speed up the
convergence. The features used in this approach to train and test the SVM classifier are the
relative distance, the heading of the suspicious vehicle relative to the host vehicle and the speed
of the vehicle. This approach was tested in a simulated environment and the authors claimed to
achieve 100% coverage of and 77% precision without discounted BF and 93% coverage of and

90% precision with discounted BF.

Reference [3], discussed above, was further extended and tested on real time data in [4].
This work focused on “’behavior” classification instead of “intention” classification and the be-
haviors of a driver in this work is categorized as “compliant” or “violating”. The objective is
to find whether a driver will stop before the stop bar if the traffic signal indicates to do so
or not. Authors presented both discriminative and generative classification approaches to ad-
dress this problem. The discriminative approach uses SVM-BF architecture as discussed above
[3] and the generative approach uses Hidden Markov Models (HMMs) with the Expectation-
Maximization (EM) algorithm to develop two distinct HMMs for compliant and violating be-
haviors. Authors claimed to get better results than the traditional methods when compared with
SVM-BF and HMM based approaches. Also SVM-BF based approach was the top performer
algorithm in all the tests so is suggested to be suitable for real applications.

Another recent work on future behavior prediction was proposed by [20] for an inner-city
traffic condition. This work focuses on braking behavior of vehicles on straight road. The prob-
lem is addressed using the concept of multiclass learning in low dimensional representation of
the current situation and predicted behavior, and uses both the dynamic and the static infor-
mation of the vehicle and the traffic light respectively. The driver behavior is described using
a set of elementary behaviors named: ”stopped”, “braking” and “other”. These elementary be-
haviors are called “behavior primitives” and are decomposed using heuristics which use speed,
gas pedal, and break pedal information. A Multi-Layer Perceptron (MLP) or a simple neural
model is being used for the learning purpose having three behavior primitives as the outputs.
As a result of this work authors claimed to get a prediction horizon upto 6 seconds which is a
highly significant result when compared with other approaches with prediction horizon upto 2
seconds.

2.3 Generative learning based approaches

A generative learning based approach model all the underlying variables and manipulate
them for classification. Input and output are represented by joint distribution and this joint
distribution is conditioned for the purpose of classification. Some of the examples of Generative
methods are Gaussian, Hidden Markov Model (HMM), Bayesian Networks, Markov Random
Fields etc.

In [18], a graphical model, Hidden Markov Model (HMM) and Coupled HMMs were
trained using experimental data to create models of seven different driving maneuvers. The
results showed, on average, prediction of maneuvers 1 second before it actually started. An-
other work by [9] used simple Dynamic Bayesian Network or HMMs for predicting driving
behavior in terms of future stop probability of a vehicle at an intersection using present and
past observable data. Various factors causing changes in drivers intention were modeled using
state transition probabilities and sequential inference through DBNs was used for prediction.
The results of this approach showed prediction of future stop probability several seconds before
its occurence and also found that drivers behaves according to certain habits while changing
lanes.

[14] proposed a probabilistic model based approach using HMMs for situation modeling
and recognition. A situation in this work is defined as a distrubution over sequences of states

10

fuzzyfication basic elements maneuver models

steering - turn

angle T braking | | wn
dIlVll’lg SlOle gl Unclassified braking. driving slowly turn w/o

velocil halt halt I :mj

AL i

= lane change

turn w indicator
— T
turn wo indicator

follow vehicle

accel.

.
T

Figure 2.3 — Overall structure of the system proposed by [8]

having meaningful interpretation and a HMM is used to characterize each situation. The ap-
proach was tested on real data in a highway scenario with three situations as: passing, aborted
passing, and following.

In [25], a layered or hierarchical HHMMs based generative approach has been used for
behavior recognition in a normal traffic conditions. The behaviors in this work are defined as:
move straight, left turn, right turn and overtake. The idea is to model behaviors in two layers
with each layer consisting of one or more HMMs. This layered approach is similar to that of
[14]. High level behaviors, such as: move straight, left turn, right turn and overtake are treated
as the hidden states of single HMM at the upper layer. For each hidden state or behavior at the
upper layer there exists a HMM at the lower layer representing sequence of transitions of the
corresponding hidden state. These sequence of transitions basically represents the semantics
to realize each hidden state or behavior. The upper layer HMM update gives the probability
distributions over hidden states or behaviors which is further used for behavior recognition.

In [8], a Probabilistic Finite State Machine (PFSM) and fuzzy logic is used for maneu-
ver recognition. The overall structure of the system is given in Figure 2.3. The input variables
(velocity, steering angle etc.) are fuzzified using fuzzy rules and corresponding membership
functions in order to estimate the basic elements (braking, halt, start etc.) constituting maneu-
vers. These basic elements represents the nodes of the state transition diagram representing
PFSM as a directed graph which basically represents the possible sequences of basic elements
of several driving maneuvers. Finally a Bayesian filter is used to find the probability distribution
of the basic elements of PFSM for maneuver recognition. This approach is similar to the ap-
proach by [25] in which the lower layer of HHMM represents the semantics that form the basis
for higher level behaviors. These semantics are similar to the fuzzified basic elements used in
this approach. This approach is also similar to the work by [20] where behavior primitives are
similar to the fuzzified basic elements in this approach. The major drawback of this approach
is that the fuzzy rules are designed manually, therefore, depends completely on the designers
skills and his understanding of the problem. Another issue is the breaking of the problem into
such a set of basic elements that is sufficient to form effective fuzzy rules.

2.4 Other Approaches

[22] introduced a mind tracking architecture based on cognitive model of driver behavior
implemented in a cognitive architecture. This approach was further improved and presented by
[23]. The idea is to find the similarity between the driver’s actual observed behavior and sev-
eral simulated driver behaviors created using the cognitive model to infer driver’s unobserved
1ntentions.

12

3
Proposed Approach and Discussion

As stated in Chapter 1, the aim of this thesis is to focus on lane change intention prediction
for an advanced driving assistance system using a combination of multiclass probabilistic out-
put from a kernel based discriminative classifier known as SVM, and a Bayesian Filter (BF).
The following sections of this chapter give an insight on why a kernel based SVM, the proba-
bilistic output, and a Bayesian filter have been used to address this problem. This chapter also
discusses about the experimental platform used for training and testing purposes.

3.1 Addressing the problem

If we look at the problem of lane change intention prediction a bit closely then we find that
if we don’t have access to the thinking or the psychology of the driver, if we can’t model some-
one’s brain activities, and if we can’t control the complete traffic scenario, then the problem of
lane change intention prediction becomes the problem of understanding, modeling and learning
the families or classes of driving patterns or trajectories related to the lane changes and then
trying to find out in which class a particular pattern belongs to by looking at some initial parts
of it. This is not as simple as it seems because general driving patterns are highly stochastic and
depend on many internal and external parameters of the driver and the surrounding environ-
ment. Also the sensors used to perceive the environment have their own limitations in terms of
precision, speed, and reliability. For example, if the driving car has very good braking system
and good maneuverability then the driving patterns changes even if the driver is the same. Also
if there are a lot of vehicles on road, then the driving pattern of the vehicle changes based on
the driving patterns of the other dynamic vehicles in front it. Therefore, it becomes a highly
complex multi agent pattern prediction problem with many internal and external controlling
parameters including the psychology of the drivers, and the surrounding.

We have seen in Chapter 2 that there are some approaches (e.g. [13]) in which either infor-
mation about the drivers activities such as head motion along with other information is used or
authors have tried to model driver’s behavior using a cognitive architecture (e.g. [22],[23]). The
approach in this thesis doesn’t use internal or external information about the state of the driver.
This thesis is mainly focused on predicting the lane changes based on the external parameters
such as lane information, speed, steering angle etc. of the vehicle on highway scenarios and
each agent on road is considered to be independent to each other. In this context, the problem
can be rewritten as:

. \
\ \ \
\ AN \
\ \ \
\ \ \
\ T
AR ks
' \
] A |
/ [I P]
I ;.- il
II s I
7 il
/ i il
i I
/6 /64
/ // ? /

Figure 3.1 — Three lane change situations on highways

— Problem Statement: Predict lane change intention before it is actually happened.

— Scenario: Highway scenario with availability of external parameters (such as lane infor-
mation, speed etc.) using real sensors (camera and odometers).

— Hypothesis: Assuming each agent on road to be independent to each other.

3.1.1 Why Kernel based SVM as a discriminative classifier?

The problem formulated above can be expressed as a multiclass classification problem with
three classes as: left lane change, right lane change, and no lane change, representing three
families of trajectories for each class as shown in figure 3.1. Other situations like multiple lane
changes can be seen as the combinations of these three classes. So we have a notion of classes
and this problem, therefore, can be seen as a multiclass classification problem in which each
class represents a family of trajectories w.r.t. the road geometry.

Many classifiers such as: Logistic regression, Support Vector Machine, Naive Bayes etc.
are available and choosing a classifier is generally a very important step for a specific problem.
A kernel based large margin classifier known as Support Vector Machine (SVM) has been used
to address this problem. Motivations behind using kernel based SVM are:

e adriver’s state may lie in a high dimensional feature space [27] and a kernel maps the input
data from a low dimensional space into a high dimensional space converting a nonlinear clas-
sification problem at low dimension into a linear classification problem at high dimension.

e our feature vectors are high dimensional (~ 128 —400) and kernels can easily handle very
high dimensional feature vectors.

e SVM is a maximum margin classifier, therefore, is expected to classify similar trajectories
belonging to different classes more precisely.

e SVM’s objective function is convex, therefore the solution is global optima.

e different studies (e.g. [2]) have shown that SVM gives better and highly promising results
compared to a generative approach known as Hidden Markov Model when applied to behav-
1or prediction problem for ADAS.

e alane change can also be seen as a time series process and SVM has shown excellent results
when applied to time series prediction problems [16].

14

Figure 3.2 — The Lexus experimental platform for real data generation

3.1.2 Why Multiclass Probability Estimates and Bayesian Filter?

Considering the limitations of sensors, algorithms, and real-world scenarios, many lane
change false alarms are expected if only an SVM is used directly for the final decision mak-
ing. This has been seen in our experimentation as discussed in Chapter 5. False alarms can be
distracting, annoying, and very dangerous in real time. To address this problem of false alarms
a Bayesian filter (BF) has been used on top of the multiclass classifier. Since a BF takes prob-
abilistic inputs as likelihood and prior, a generalized Bradley-Terry model based Multiclass
Probability Estimates of SVM [10] is used to obtain probabilistic outputs from the SVM. The
BF takes the probabilistic output of the SVM as the likelihood input and the learned state tran-
sition matrix as the prior to find the posterior over all the possible classes. This posterior is
finally used for the decision making.

3.2 Experimental platform for real data generation

Finally, to implement the proposed approach a highly realistic dataset and an experimental
platform is required for the offline training of the SVM classifier along with the state transition
matrix for Bayesian filter, and for the testing of the overall approach. The experimental platform
used in this thesis is a Toyota Lexus car, shown in figure 3.2, equipped with a stereo vision
camera, odometers and a powerful processor. This platform also has vision and IMU based real
time lane tracking capability integrated with it. The data generated from the lane tracker has
been used as an input to our lane change prediction system. A brief technical details about the
lane tracker is given in Chapter 4.1.

Offline

NN -
\ \\ \ /, Training
\ \ 7 !
\ \ ’
\A “'. “ Feature ,r"
. \ Lane Tracker vector !
i \ ! i Generation]
- | l
| \ |
P '
Iy ,' , Lot 1 Probabilities
I -1 | Trained Right
I)’ I Multiclass SVM
I I i Classifier Mo Lane
, f‘ " Change . .
’I I | Likelihood
I
e \/
.
I/ ’{ l’ Learned State — - [Bayesian Filter
! U I Transition Matrix Prior
nzm
w i 2 &
- =] =
3 —_————
R Posterior

Figure 3.3 — Overall Approach

3.3 Why Vision and IMU based lane tracker?

In section 4.2, details about the designing of a feature vector for the SVM is discussed.
The main components of the feature vectors are the position of the vehicle w.r.t. lane markings
and the heading angle of the vehicle w.r.t. road curvature. There are many ways to get this
information. One way is to put a precise GPS on the vehicle, use highly precise road network
information along with information about the lane markings using Geographic Information
System (GIS) and use a very precise Inertial Measurement Unit (IMU). IMU fused with GPS
can be used to get an accurate position, GPS can be used to find latitude, longitude, and height
which in turn can be used with GIS to find the position of the vehicle w.r.t. the lane markings,
and can be used to convert the heading angle of the vehicle w.r.t. the road curvature. This is a
simple way to gather data and implement the proposed approach but the major problem with
this kind of system is that the publicly available GPS accuracy is not high enough to be used
for this purpose and GPS is not available everywhere. In addition, a precise GIS is very costly
so such systems are not realistic for mass production.

Therefore, to make the system independent of GPS and GIS so as to increase the reliability
and decrease the cost, a vision and IMU based lane tracker system integrated with the Lexus
experimental platform has been used to implement the proposed approach.

3.4 Overall Approach

The overall approach as discussed in previous sections is shown in figure 3.3. There are
three major steps used to address the lane change intention prediction problem in this such as:

16

data generation using lane tracker, multiclass probabilistic estimates using SVM, and Bayesian
filter for removing false alarms. There are many other issues to be handled while using SVM
and BF, such as: designing feature vectors, choosing kernels, learning the state transition ma-
trix, likelihood etc. Details about handling these issues is explained in the next chapter.

4
Implementation

Chapter 3 gave the overall approach to address the problem of lane change intention predic-
tion. The basic three steps used are: data generation using the lane tracker, probabilistic classifi-
cation using SVM, and Bayesian filtering. This chapter gives details about the implementation
methodology and related issues with each steps. Finally, the detailed overall approach is shown
at the end of this chapter.

4.1 The Lane Tracker

As stated earlier, the Lexus experimental platform integrated with the lane tracker is used
for the real data generation for training and testing of the proposed approach. In general, the
lane tracking problem is the integrated form of tracking and lane detection problems. It can be
seen as a state estimation problem with state vector consisting of the lane parameters. These
parameters defines the road geometry in terms of the lane positions with respect to the vehicle
[6]. The estimation can be done using particle filter or any other recursive estimation technique.
The lane tracker used in this thesis considers road to be flat and lane markings to be continuous
and parallel. This assumption speeds up the tracking process. The output of the lane tracker is
described in section 4.2.1. Briefly, the lane tracker steps used in this thesis are:

1. Define lane position and geometry: Parametric equations describing the lane positions
and the road geometry is formulated.

2. State vector prediction using Particle filter: The parameters of the parametric equa-
tions described in the previous step are used to form a state vector. This state vector is
recursively estimated using the past state vector and the odometer information (steering
angle and speed). The updated state vector represents the current parameters defining the
current lane positions and the road geometry.

3. Grey-scale image capturing and ridge detection: Ridges are detected to get an idea of
the position of the lanes in the image space (see figure 4.1a).

4. Horizon estimation: Horizon is estimated using the estimated pitch angle of the mounted
camera. The pitch is estimated along with other parameters in step 2. This reduces the
image search space because the lane markings can’t stay above the horizon.

5. Voting scheme for finding the best particle: Since particle filter is used for the estima-
tion so we have many estimated state vectors, each state vector for each particle. A voting

(a) Ridge Detection (b) Lanes due to many particles (c) Lane due to highest voted
particles

Figure 4.1 — Lane Tracker Outputs

scheme is used to find the particles nearest to the ridge. The particles nearest to the ridge
are then chosen and the corresponding state vector is used as the predicted state vector
describing the lane positions and road geometry (see figures figures 4.1b, 4.1c¢).

4.2 Multiclass Probability Estimates using SVM

As discussed in Chapter 3, the lane change intention prediction problem can be seen as
a multiclass classification problem with three different classes: left lane change, right lane
change, and no lane change. Generally an SVM generates the class number to which a partic-
ular input data belongs. To get the probabilistic estimates as the output of SVM, a generalized
Bradley-Terry model based multiclass probability estimates proposed by [10] is used. Further
subsections give brief about SVM and explains the implementation methodology.

4.2.1 Support Vector Machine

Based on statistical learning theory, Support Vector Machine (SVM) is a supervised learn-
ing algorithm that uses the concept of margin maximization for the purpose of classification.
The basic idea is to find a hyperplane that maximizes the separation between the datapoints of
different classes. It uses the concept of kernels to project data from low dimensions to higher di-
mensions thus converting a nonlinear problem in low dimensions into a linear problem in higher
dimensions. Below, a brief description about the mathematics behind the SVM for binary clas-
sification is given [5], [26], [17], and the idea of it’s multiclass extension is also discussed in
brief.

Let S = {(x1,51)--+, %m,ym)} € x X y denote a set of m training examples with x; as the
training example and y; the corresponding label, where y € R" and y € {—1,1}. Then the
purpose of SVM is to minimize an objective function in order to find a hyperplane < W, b > that
maximizes the margin between datapoints of both classes. Here W is a vector representing the
parameters of the hyperplane and b is a scalar representing the intercept term. The optimization
problem of SVM is:

1

. C
mll’lW7C207b EWTW‘i— n—1 Cj (41)

1

m
1=

20

sty (Wixi+b)>1-¢ (4.2)
o Ym(Wxy4+b) > 1-&, (4.3)

Here C is the regularization parameter and { is the slack variable. The regularization
parameter C controls the twin goals of maximizing margin and ensuring that most of the ex-
amples have functional margin of atleast 1. The slack variable reforms the hard margin SVM
classifier into soft margin classifier to allow errors in the training dataset. The above optimiza-
tion problem contains convex objective function with linear constraints and can be solved using
quadratic programming (QP). This objective function is further represented in its dual form to
allow us to use kernels to work efficiently in very high dimensional space. Dual optimization
representation of the above SVM optimization function is:

m m m
maxe Z o; — Z Z yiijC,'OCj(xJ' ~x,-) 4.4)
i=1 i=1j=1
s.t.) yio; =0 4.5)
i=1
C
m0<a< (4.6)

Here o; are the Lagrange multiplier and (x; - x;) is the dot product between x; and x;. This
dual form of the SVM is solved using SMO (Sequential Minimal Optimization) algorithm and
the obtained o; are used to find the optimized value W*:

m
W =Y ofyixi 4.7)
i=1
Using W*, finding b* is straightforward. W* is further used in the decision function to find
if the given example x belongs to class (y = 1) or not based on its value is positive or negative.
The decision function is written as:

h(x) = sgn((W*)Tx +b) (4.8)

= sgn{(z ot yixi) x+b} 4.9)
i=1

=sgn y o yi(xi-x)+b (4.10)

i=1

Here, sgn represents the sign of the decision function. If 4(x) > 0, testing example x belongs
to class (y = 1), otherwise it belongs to the other class. In the dual form of SVM discussed
earlier, (x; - x) is the dot product of the new test vector x with the example x; and can also be
represented as K (x;,x) = ¢(x;).0(x), where K is known as the kernel function and ¢ is the
feature mapping (represents high dimensional feature space). A valid kernel (follows Mercer’s
theorem) enable us to calculate K (x;,x) in linear time without even explicitly finding ¢ (x;) and
¢ (x) which takes O(n?) time. So kernels allow us to learn in high dimensional feature space
given by ¢ in linear time, thus it is widely used by machine learning community.

In case of multiclass classification problem with k classes, the same idea is extended and k
different hyperplane parameter vectors W; are obtained for each class and the parameter vector
that gives maximum value of the hypothesis Wl.Tx with the given example x gives the corre-
sponding label. The standard steps used to effectively implement SVM for any related problems
are [7]:

. Data Collection for training and testing

. Designing a suitable feature vector

1

2

3. Kernel selection (if required)

4. Find best parameters using cross-validation
5

. Use these parameters for training and testing purposes

Each of these steps are explained in following sub-sections.

Data Collection

As discussed in the earlier section, data are collected using the experimental platform in-
tegrated with lane tracking capabilities and inertial sensors. The data from the experimental
platform consists of:

— Data from the Lane Tracker (Estimated road model)

— Road width
— Lateral position of the vehicle w.r.t. left lane marking
— Vehicle steering angle
— Camera pitch
Road curvature
Variation of road curvature
— Data from the CAN bus
— Velocity
— Acceleration
Steering Angle
Time stamp

This data has been collected at 32 frames per second in a log file for the training purpose.
They were first converted into feature vectors for training and testing purpose as explained in
the following section.

Designing a suitable feature vector

Designing a suitable feature vector is a very important step for any discriminative classifier
because selection of features is directly related to the discriminative capabilities of the classifier.
Although there is not any fixed theory behind designing or choosing feature vectors, we have
to choose the best features based on the data available and our understanding of the problem
and then try other meta-features (features formed using the combinations of existing features)
also for validation.

Intuitively, the features most likely to discriminate different classes of lane changes are:
lateral position of the vehicle w.r.t. left lane (x), and the steering angle of the vehicle w.r.t. road

22

st Lane Changes < ar 7 Lane Changes

_— 4 A

EW
gl . pICN TR L T

L L L L L
u} 22 40 80 80 1C0 120 14C -5

1 1
0 20 40 60 80 100 120 140

(a) Lateral Position w.r.t. Time (b) Steering Angle w.r.t. Time

Figure 4.2 — Lateral position and Steering angle plot

»

g]

Straight Left Turn

Figure 4.3 — Straight vs Turning (defined w.r.t. road geometry)

curvature (¢). To validate this intuition, (x) and (¢) are plotted using real time data captured
from the experimental platform (see figure 4.2). Figure 4.2a shows that during left lane change,
x first decreases, reaches to zero and then just after the lane change reaches it’s maximum and
then starts decreasing until it reaches almost a constant value. The pattern is just opposite in
case of a right lane change, therefore, x has totally different patterns for different types of lane
changes and thus is suitable as a feature. Similarly, figure 4.2b shows that the pattern of ¢
is noticably different for different lane changes and thus can be chosen as a feature. Another
benefit of choosing ¢ as a feature is that it makes the algorithm independent of the road
structure because ¢ is the heading angle of the car with respect to the road curvature. A better
illustration can be seen in figure 4.3 explains it in a better way. A vehicle following the road
curvature is defined to have a straight path inspite of the wavy road. All the maneuvers either
straigth, left or right are always taken with respect to the road curvature.

Along with x and ¢, their first derivatives, % and ¢ (see figure 4.4) also have different
patterns for different lane changes and therefore are chosen as features. Since speed limit is

Lateral posizion Derivztive of aterd position Lateral position Derivative of lateral position

a A R N |
2 \F

84 85 86 ar == 89 o4 85 8E a7 88 =<] 1 22 23 24 25 26 21 22 23 24 25 26
Trne Time Time Time
Steering angle w.r -, road curvalure Derivztive of Steering angle Steering angle w.r.t. road curvature Derivative of Steering angle

Tl T w

-10 -1 -
84 a5 86 a == 89 84 9 21 22 23 24 25 26 21 22 23 24 25 26

Trne Time Time Time

-
n
IS
w

w
w

/N
+

| ateral Pnsitinn
~
Derivalive uf Lalerdl Pusilion

Lateral Position
n
Derivative of Lateral Position

e

»
n
IS

Stesring Angle
w

&

Derivalive ul Sleering Arigle
Steering Angle
n
Derivative of Steering Angle
o

o

(@) x, x, ¢, q) for Right lane change (b) x, X, ¢, q) for Left lane change

Figure 4.4 — Difference between right lane change and left lane change

different for different highways, therefore, intuitively we can say that choosing velocity as a
feature will not be so fruitful. Still, for the sake of validation, different features have been used
to make different feature vectors and the result is shown in Chapter 5.

Another issue while making a feature vector for the time series data is the length of the
feature vector. Since a lane change is a continuous process and can last for 1 second, 2 sec-
onds or even more or less based on the situation or the driver, a single data point at a single
moment of time can not represent the complete lane change process precisely. Therefore, to
generate ground truth data, a window is selected around the point when the vehicle just reaches
the lane markings for a lane change and all the datapoints within that window are labelled as
the true datapoints representing corresponding lane changes. This window size should be suf-
ficient enough to capture a lane change process completely. Within this window a subwindow
is selected and different features at different times within this subwindow are concatenated to
form the final feature vector of fixed length. This subwindow is moved within the window in or-
der to generate different data points representing lane changes. This process is shown in figure
4.5. The effects of window and subwindow sizes, and different feature vectors are discussed in
details in Chapter 5.

Mathematically, if (1 + #2) represents the window size (see figure 4.5), f represents the
feature length for each feature (subwindow size), fps represents the data frames collected per
second, and lateral position (x), steering angle (¢) and their derivatives are the selected features,
then a feature vector at time 7 can be represented as:

Fr = [XT7XT7¢T7d)T] e R"

where,
P 1
fps
n=4xf

Xr = [fofxtafo(f—l)xta ey XT 1, XT]

XT = [xT—thaxT—(f—l)Xl; ...,XT]

24

~——\ - Left Lane Change
\ Manuever

Window

»Moving Sub-Window

Figure 4.5 — Creating window and subwindow for making feature vectors

D7 =[Ot Or—(f—1)xt> > OT]
Dr = [@r— futs O7—(r—1)xt> - OT]

After the selection of features, all the training data is labelled and represented in the form
of {(F1,y1),---, (Fn,ym)} for the training purpose, where F; represents the ith feature vector and
yi represents its corresponding label. Similarly while testing, the input data is converted in the
form of a feature vector and trained model of SVM is used to find the corresponding label.

Kernel Selection

The motivation behind using kernel is that it maps the data from low dimensional space into
high dimensional space converting a nonlinear classification problem at low dimension into a
linear classification problem at high dimension [5]. The basic four kernels generally seen in the
literature are:

1. linear: K(X;,X;) = X[X;

2. sigmoid: K(X;,X;) = tanh(yXIX;+r)

3. polynomial: K(X;,X;) = (yXIX;+r)4,y>0

4. radial basis function (RBF): K (X;,X;) = exp(—g||X; — X/||?),d > 0

Here, g, r, and d are the kernel parameters. The thumb rule is to choose a kernel that gives
best results in the cross validation (m-fold cross validation: divide dataset into m parts, choose
(m-1) parts for training and the remaining part for testing, repeat this for each part). In this
work, RBF kernel is used and its performance is compared with other kernels and discussed in
Chapter 5.

Finding the best parameters

Different parameters used in the proposed approach till now are (figure 4.5):

1. 1 : It represents the difference between the time of starting of lane change maneuver and
the ground truth.

2. t2: It represents the difference between the time of end of lane change maneuver and the
ground truth.

3. feature length (f) : It represents the length of each feature that makes the complete feature
vector.

4. Cand g : C and g are the regularization and the kernel parameters respectively.

The results of SVM is highly sensitive to these parameters. The methodology to find the
best values of these parameters and the effects of these parameters on the learning is discussed
in Chapter 5.

4.2.2 Generalized Bradley-Terry model based probabilistic
output

The approach proposed by [10] is used to get the probabilistic outputs from the multiclass
SVM. This approach extends the Bradley-Terry model for paired individual comparisons into
paired team comparisons. The algorithm for ”one-against-rest” multiclass probability estimate
using the approach proposed by [10] can be briefly written as:

Algorithm:
Let there are k classes.
Objective: find p; = P(x in class s), likelihood of example x for class s.
Assumption: Classes are balanced, i.e. number of training data in each class is almost the same.
Also r; 1s known, then:
IfFYs =1,
optimal p = [ry,---,r]T.
else

2
find the root of YX_, (1+6)— 3/ (1+68)*—4r,6

26
put 6 to find optimal p; using, p; =

—1=0.
(148)— 3/ (1468)2—4r8
26 :

4.3 Bayesian filter to reduce false alarms

Previous section gave details about how to use SVM to get multiclass probability estimates
representing different lane change maneuver probabilities for the given feature vector. In real
data, from many experimentation discussed in Chapter 5, it has been observed that SVM alone
for the classification gives many false alarms. These false alarms can be very dangerous while
driving. To address this problem of false alarms a Bayesian filter (BF) has been used on top of
the SVM. Therefore, SVM is not used to make the final classification decision rather it’s giving
probabilities as the output which acts as one of the input to the BF. The posterior output of the
BF is then used for the final classification decision making.

26

4.3.1 BF Algorithm

The Bayesian filtering algorithm is mainly the recursive form of Bayes rule which gives an
inverse relationship between posterior, prior and likelihood.

posterior < likelihood x prior
More precisely, a Bayesian filter in discrete form can be written as:

P(X|Zy) o< P(Z|X:, 2141)P(Xi|Z14—1) 4.11)
o< P(Z/|X)[Y P(X;|x1—1)P(x;~1]Z14-1)] (4.12)

Xr—1

where, P(X;|Z1,—1) is the posterior distribution at time ¢, P(Z|X;) is the likelihood, P(X;|x;_1)
is the state transition probability and P(x;_1|Z.;—) is the prior.

4.3.2 Implementation of the Bayesian filter

To implement the Bayesian filter we need to compute three terms likelihood, state transition
probability, and prior. The prior at time ¢ is the posterior at time ¢ — 1, therefore can be calculated
recursively and initialized uniformly at time # = 1. To find the likelihood and the state transition
probability we first need to define X;. Since our aim is to predict lane change which further
has been divided into three classes left lane change, right lane change and no lane change,
therefore X; in our problem can take three values each representing a particular class. So the
equation can be rewritten as:

P([M; = L||Z;) > P(Z|[M;=L])] ZLRNP(MI =LIM—y =m_1)P(My—1 =m—1|Zy.1-1)]

where, M; represents maneuver at time ¢ and L,R and N represents left, right and no lane
changes respectively. Like wise we can write the posterior equations for R and N. Till now we
have formulated the Bayesian filter in a way to fit the lane change prediction problem.

Likelihood

P(Z;|[M;~L]) represents the likelihood. The probabilistic output of SVM at each time step
can directly be used as the likelihood (or measurement).

State Transition Matrix

P(M;|M;_) represents the state transition probability. The corresponding state transition
diagram for all the three states or classes L,R, N is shown in Figure 4.6

This state transition diagram can be represented in the form of a 3 X 3 matrix and our task
is to find all the nine parameters of this matrix offline using the training data. The normal way
to find these parameters is by doing maximum likelihood (ML) estimation using expectation
maximization algorithm. But since in our case all the states M;.7 in our training can be labeled
the state transition matrix is simply the normalization of the co-occurrences (counts):

-

/\
w

Figure 4.6 — State transition diagram for left, right and no lane change

where, S(i, j) is the number of i — j transition the training sequence.

L, R N
Li—1 (511 s12 s13
Ri_1| 521 s22 823

Ni—1 \s31 s32 $33

Therefore, the probabilistic output of the SVM acts as the likelihood and learned state tran-
sition matrix acts as the prior to the Bayesian filter and the posterior from the Bayesian filter is

then used for the final classification decision making.

4.4 Detailed Overall Approach

The detailed overall approach is shown in figure 4.7. Dotted arrows points to the graphical
form of the output of each block and solid arrows represents the process flow.

28

e e] . Corr e T e
oA R e Offline Al H | -
R e . arl]
i Mg : Trained |
. 4/‘ f nak
» ‘ 'J' | W |
H N j,n‘ R -r.‘l\',ﬁhl W T
§ I -
R Y) . Left .
- ™ Trained ! Probabilities using
—} i Right
F\fat;”-e MU|t‘|C|aSii SVM g Bradley-Terry Model
ector Classifier Li .
: ikelihood
5\ Generation No Lang
\ \\ Change
\ '

——
.

Dynamic Bayesian
Network

La ne Tra Cke r Learned State

[
1
|
| ey e .
| : Transition Matrix R
|l ag § *
[25
[.
1y . Posterior
I .
,' 3
i é‘;fsq o a
/ 5 . 2 .
,' <3 : ‘ s
I - = .
] w ‘;é f =
I . s 0
. | Q
Il e
L Yoa 4 m o m ow W

Figure 4.7 — Detailed Overall approach

5
Results and Discussion

Chapter 4 gave the technical details about the implemetation of the proposed approach.
In this chapter, the proposed approach is evaluated using real-world data. Section 5.1 gives
description about the different terminologies used throughout the chapter, section 5.2 and 5.3
compares the results between SVM and SVM+BF based approaches. Section 5.4 is introduced
for the robustness evaluation of the overall approach and section 5.5 discusses the startegies
used to find the best values of different parameters used to implement the proposed approach
and finally section 5.6 compares the effects of different sizes of the training dataset on the
proposed approach.

The experimental platform used to collect real-world data is a Lexus LS600h (see chapters 4
and 5) equipped with a TYZX stereo camera placed behind the windshield. The stereo baseline
is 22 cm, with a field of view of 62°. Camera resolution is 512 x 320 pixels with a focal length
of 410 pixels. The lane tracker integrated with the experimental platform was used to collect
different datasets with more than 200 lane changes (110 left lane change, 90 right lane change)
on a highway near Grenoble, France. Before discussing about the results of training and testing
using these datasets, first of all let’s have a look on some of the terms frequently used in this
chapter.

5.1 Terminologies and Evaluation Metrics

Different terminologies and the evaluation metrics used in this thesis are defined in this
section.

e Ground Truth: It represents the moment at which the vehicle under consideration is about to
reach the lane markings during the process of lane change.

e (Classes: For the purpose of classification, each maneuver has been assigned a class number.
1 for right lane change, 2 for no lane change, and 3 for left lane change.

e Prediction point: The time at which there is a change in class while testing i.e. from 1 to 2,
or from 2 to 3 etc.

e Prediction time: Prediction time is the time difference between the ground truth and the
corresponding prediction point while testing. To find prediction time, first of all a prediction
point with the same class as that of the ground truth is searched in a window of 4 seconds
(assumuing it to be within 4 seconds window if predicted) before the ground truth time in

the classified data (or tested data). If there are many prediction points with the same label
as that of ground truth within 4 seconds then the prediction point nearest to the ground truth
is chosen (worst case) and then this prediction point is used to find the prediction time. If
the ground truth class is classified beyond the ground truth time in the testing data then this
is considered as a flase detection because the aim of this thesis is to predict the classes in
advance.

e Precision, Recall and F1-Score: In terms of classification, precision is the probability that
the output of the classifier belongs to a relevant class, whereas, recall is the probability that a
relevant class will be the output of the classifier. F1-Score is the harmonic mean of precision
and recall. In this thesis, most of the time the average of precision, recall and F1-Score for
left lane change class and right lane change class is used for the performance evaluation

purpose.

L true positive
Precision = — —
true positive + false positive
t it
Recall — 'r.ue positive ‘
true positive + falsenegative

2(Precision)(Recall
F1— Score — (rec.liwon)(ecall)
(Precision + Recall)

5.2 Results with SVM

The training data consists of 22 left lane changes, 24 right lane changes and 24 trajectories
belonging to no lane change situation. The reason for choosing this set of training data is
discussed in section 5.6. The testing data consists of total of 69 (left + right) lane changes.

We have seen in section 4.2.1 that the implementation overall approach involves many
parameters e.g. window size (¢1 + t2), subwindow size (or feature leangth), regularization pa-
rameter (C), kernel parameters (g) etc. Choosing these parameters is very crucial as these pa-
rameters effects the overall results greatly. Section 5.5 explains how to find the best values of
these parameters. Different values of these parameters used in this section are:

1. Radial basis kernel with kernel parameter (g) = 0.0625

2. Regularization parameter (C) = 8

3. Lane change maneuver window parameters: t1 =2,t2 =2
4. Subwindow parameter or Feature length (f) = 32
5

. Feature vector consisting of lateral position of the lane w.r.t. vehicle (x), steering angle
w.r.t. road curvature(¢), and their derivatives () and (¢).

6. Data collection rate (fps) = 32, final classification rate = 5 classifications per second.

Two people were used to generate the ground truth (time when the vehicle just reaches
the lane markings for crossing the lane) and their average was taken as the final ground truth.
Figure 5.1 represents the ground truth data for 5 lane changes (3 left + 2 right) testing data
for visualization and understanding of the plots. In reality the algorithm was tested on total
of 69 lane changes. As discussed earlier, right lane change is labeled as 1, no lane change as
2, and left lane change as 3. This testing data was used as an input to the trained multiclass

32

Ground Truth

2ar

Class
ra

1 | | | | | |
i 20 40 G0 i1} 100 120 140

Time (sec)

Figure 5.1 — Ground Truth data for testing

Probahility distribution after 5% M

1ﬁ :.(' 7 ‘m—] 3

—=—Left LC

0.6 [Ll) Right LC —S— Actual lane changes (Ground truth)
1 T Mo LC 25 —+— Predicted lane changes after SYM
0B '
o Q
o n4
15
0.z
i = = L y L L L |
] 20 40 60 80 100 120 140] 20 40 60 80 100 120 140
Time {sec) Time {sec)
(a) Probabilistic output using SVM (b) Predicted Lane changes using SVM

Figure 5.2 — Results using SVM

SVM classifier and different probability measures for different classes were taken as the output
(see figure 5.2a). For a particular feature vector input at a particular instant, the SVM outputs
the probability of this feature vector belonging to a particular class. Note that, these classes are
independent to each other so the probability for each class may not sum to one for any particular
moment. The testing feature vector at any moment belongs to the class having the highest
probability (see figure 5.2b). If as a final output we select the highest value of probability,figure
5.2b, we observe many false alarms. There are situations at which the classification fluctuates
from left lane change to right lane change and again comes back to the left lane change within
6-7 frames (6/32 seconds) which is not possible in real time.

Probaility distriaution after SVM + BF
1= ' o 7 3 " : = —
¥ ‘ T — LefiLC —%— actual lane changes (Ground truth)
o
—%— Pragi
Right Lc Predicted lane changes after SY¥h + BF

08 Mo LC

s}

=
=

Frabability
Class
r

=
Ia

4
0.z
4 b A

NI o 1

1) 20 40 B0 go 100 120 140 1) 20 40 B0 go 100 120 140
Time {sec) Time {sec)

(a) Probabilistic output using SVM + BF (b) Predicted Lane changes using SVM + BF

Figure 5.3 — Results using SVM + BF

5.3 Results with combination of SVM and Bayesian
filter

We have seen in the previous section that the results of the SVM on the testing dataset gives
many false alarms. To reduce these false alarms a Bayesian filter (as discussed in Chapter 3 and
4) is used on top of the SVM. The likelihood is taken from the SVM and the state transition
matrix is learned from the dataset. The learned state transition matrix is:

L R; N;
L1 (£0.9920 0 0.0013
R 0 0.9920 0.0013
N;—1 \ 0.0080 0.0080 0.9974

From this matrix we can see that the probability of moving from left lane change to right lane
change (or vice veras) just at the next instant is zero and this is true in real scenario also.
Figure 5.3a represents the probability distribution for each classes after filtering out the false
alarms using Bayesian filter (BF). Figure 5.3b presents the predicted classes using the filtered
probability distribution. Table 5.1 gives the performance measures in terms of the average
precision, recall and prediction time for SVM and SVM+BF for the comparison purpose. We
can see from the table that the precision is improved from 0.2857 to 0.7154 which is a highly
remarkable improvement. This increase in precision improves F1-Score also because recall
remains the same for both the cases. The average prediction time is decreased by 0.022 seconds.

Figure 5.4 represents the histogram of prediction time for all the testing dataset consisting
of 69 lane change. We can observe from the histogram that most of the lane changes are get-
ting predicted almost 1.3 seconds earlier and the maximum prediction horizon reaches till 3.29
seconds. So, in conclusion of this section, we can say that using Bayesian filtering on top
of the SVM improves results remarkably in terms of precision and recall. The average
prediction time is decreased by a very small fraction (0.022 secs) which is acceptable with

34

Prediction time histogram of 54 lane changes

Bin Count: 2

Bin Center: 2.57
Bin Edges: [2.43,2.71]

Figure 5.4 — Histogram of prediction time for testing data with 69 lane changes

Table 5.1 — Comparison of SVM and SVM+BF (Tested on total of 69 lane changes)

Cases Precision Recall Avg prediction time (sec)
SVM 0.2857 1 1.2947
SVM +BF 0.7154 1 1.2718

such a remarkable improvement on precision. The maximum prediction horizon for the
proposed approach is 3.29 seconds. BF reduced many false alarms but still we don’t have re-
sults with zero false alarms, therefore, there is still scope for improvements. The reason for not
getting zero false alarms may be the real data set that we are dealing with and the fluctuations
observed in the lane tracker.

5.4 Robustness Evaluation

The goal of this section is to test the effects of training and testing data of different drivers.
Two people were asked to drive and the classifier was trained and tested for different data
respectively. If there are two drivers x and y, then different cases that can arise are:

e Case 1: Training with x and testing with y, figure 5.5a.
e (Case 2: Training with y and testing with x, figure 5.5b.

e Case 3: Training with x and testing with different driving scenarios of x i.e. testing with x1
and x2 (see figures 5.6a and 5.6b).

Table 5.2 represents the different performance metrices for each cases. We can observe
from the table that the recall is 1 for all the cases. Also the F-1 score, precision and prediction
time are almost the same. The small variation in these metrics may be because of values of the

Table 5.2 — Robustness Evaluation

Cases Precision Recall F1-Score Avg. Prediction Time (secs)
Case 1 0.7849 1 0.8717 1.0032
Case 2 0.55 1 0.7084 0.9495
Case 3(a) 0.8235 1 0.9032 09711
Case 3(b) 0.6465 1 0.7786 1.0687
s Groud Truth and Frediction Foints (54 + BF) . Groud Truth and Prediction Foints (54 + BF)
(a) Training with x and testing with y (b) Training with y and testing with x

Figure 5.5 — Robustness Evaluation

different parameters used in the training and testing of the SVM. Effects of these parameters is
discussed in the next section.

5.5 Finding the best parameters

There is a total of five parameters (see section 4.2.1) involved during the implementation
of the proposed approach (SVM+BF) and each parameter has remarkable effects on the pre-
diction result, therefore, best values of these parameters should be chosen for testing purpose.
Simultaneously finding the best parameters is a five dimensional grid search problem and since
the values of each parameter may vary in a large range, therefore, it is computationaly very
expensive and time taking job. For example, if each parameter takes 20 values and the learn-
ing takes 1 minute for each iteration then total time required to find the best parameter will be
(20)° x 1 ~ 6 years. In our case, each parameter takes much more than 20 and learning takes al-
most 3-4 minutes, therefore, it is almost impossible to find best parameters using this approach.
To make it feasible to find the best parameters for the overall proposed approach (SVM+BF)
some strategies which were used are as follows:

e Step 1: Fix 1, ¢2 and find best C and g using grid search with exponentially growing se-
quences of C and g, [7]. For example, C =273,27! ...,23 and g =27%,272,...,2% . In this

36

Groud Truth and Prediction Points (54M + BF) Groud Truth and Prediction Points (S + BF)
3 T T T T L b - A —— ¥ 3 T — A L2 - T i
—&— Ground Truth —S— Graund Truth

25

281

Frediction Foints after St + BF [Prediction Points after Swh + BF [|

26 T 26 b

24t 1 24t B

22r T 221 b

1 1 L 1 1 1 L 1 L L
a 20 40 &0 80 100 120 140 160 180 200 a 50 100 150 200 250 300

(a) Training with x and testing with x1 (b) Training with x and testing with x2

Figure 5.6 — Training with x and testing with different maneuvers of x

—*— fverage Precizion
Average Recall
Avy pred time right Ic I

—S— avg pred time left o

Figure 5.7 — Finding best combination of (C,g) parameters for the algorithm

case, the fixed values of 71, 2 and f are 2, 2 and 32 respectively. While fixing these pa-
rameters it was made sure that these parameters gave good results while testing in different
scenarios. To confirm this many trials were done. Figure 5.7 represents different values of
precision, recall, and prediction time (separately for left and right lane changes) for different
combinations of C and g. We can see from the plot that there are many situations at which the
prediction time is very high but recall and precision are vey low leading to dangerous situa-
tions in real time. Therefore, we choose C and g combinations that gives very high precision
and recall at the same time. Different (C,g) combinations giving high precision and recall
found are: (0.25,0.0625), (1,0.125),(8,0.0625) etc. Note that the precision plot has many
breaks i.e. it is not continous at many points and the reason behind this is that the classifier
for these (C,g) combinations was not at all able to predict any lane change (left and right).

0.4 1 35

0.8

v 2.5 —+— Average Precision |

0.6 Average Recall

’ /\// 2 —F— Ay pred time
0.5 b -1
1.5 2
0.4 | y

—+— average Precision 1

0a 1]

Average Recall L
0.z Avg pred time J 0.3 *_
01

o 2 4 3] g 10 12 o Z 4 g g 1 12 14 18

(a) Finding best feature length (f) (b) Finding best values of (t1,t2)

Figure 5.8 — Finding best parameters (f,t1,t2)

We can say that the classifier was totally biased towards no lane change class, therefore, true
positives and false positives became zero leading to NaN (not a number) value of precision.

e Step 2: After finding best C and g, these parameters were fixed to their best values, ¢#1 and ¢2
were again fixed to 2, and the best value of f was found. The value of f was varied between
4 to 92 with increment of 8 in each iteration. Figure 5.8a represents the average precision,
average recall, and average prediction time for different values of f. We choose f that gives
best precision and recall along with good prediction time. We can see from the plot that very
small values of f gives low precision as well as very less prediction time and increasing
f beyond some values decreases both precision and recall along with the prediction time.
Intermediate values of f gives the best precision, recall and prediction time. Thus some of
the best values of f found using this approach are: [36,44,52].

e Step 3: Now the values of C, g and f are fixed to their best values and the iteration is done
over arange of 71 and 72 to find their best values. 71 and 2 were varied between 1 to 4 seconds
with 1 second increment step. Figure 5.8b represents the plot of average precision, average
recall, average prediction time, 71 and 2. A very interesting point with#1 =4 and 12 =3 in
the plot shows precision = NaN, recall = 0, and prediction time = 0. With these combinations
of (¢1,2) and the best values of (C, g, f) i.e. (8,0.0625,32) the classifier is completely biased
towards no lane change class. The reason behind this is that such a long window (#1412 =7
seconds) around the ground truth represents right or left lane change feature vectors also as
no lane change feature vectors, therefore, nullifying the overall discriminative capabilities
of the classifier. Some of the best values of (71,72) found using this approach are: (1,2),
(2,2), (2,3), (3,2).

In conclusion of this section we can say that the parameters effects the overall approach
remarkably. Choosing a bad parameter can lead to situations with very poor precision and
recall, therefore, the best values of these parameters giving highest precision and recall should
be chosen for the training and testing purposes.

38

Table 5.3 — Effects of the size of different training datasets

Training Datasets No. of lane changes Precision Recall F1-Score Avg. Prediction Time (secs)

Dataset-1 11 0.2666 1 0.4167 1.7434
Dataset-2 11 0.2833 1 0.4285 2.5294
Dataset-3 29 0.7 1 0.7857 2.1031
Dataset-4 38 0.6429 | 0.7222 2.0655
Dataset-5 46 0.8334 1 0.9000 1.9903
Dataset-6 75 0.75 1 0.8334 1.7521
Dataset-7 91 0.80 1 0.8750 1.4198
Dataset-8 119 0.4167 1 0.5834 1.1064

—%— Precision vs Datasets

Frediction time vs Datasets

2ar

Figure 5.9 — Effects of different datasets

5.6 Effects of the size of the training data

Any learning algorithm greatly depends on the type and the size of the dataset for training.
This section discusses on how to choose the size of training dataset and their effects. In our case
we have a dataset of almost 200 lane changes and have to choose the number of lane changes
for training purpose. Also the training dataset should not be biased towards any of the classes.
In general, the dataset should be balanced and sufficient enough to train the classifier in order
to differentiate different classes with a good margin. To understand this in details, the training
dataset was divided into 8 different datasets with increasing number of lane change maneuvers
and was tested on a common testing dataset. The testing was done on the overall proposed
approach (SVM + BF). The performance measure for each training and testing process is shown
in table 5.3. We can see from the table that the average recall is 1 in each case but the average
precision, average F1-score and average prediction time is varying as the size of training data
is changing. Since, average F1-score is measured from the combination of average precision

and average recall, therefore, only the plots of average precision and average prediction time
w.r.t. datasets is shown in figure 5.9. We can see from the figure 5.9 that the average precision
is increasing with increasing the dataset size and then it reaches it’s maximun (0.8334) and
starts decreasing with further increase in the dataset size. The trend for the average prediction
time is not the same. The average prediction time is maximum (2.5294 seconds) for Dataset-
2 but for this dataset the precision is 0.2833. This represents that if we try to maximize
our average prediction time while choosing the dataset size for training then we may end
up in a situation with very less precision leading to many false alarms not acceptable
for commercial ADAS. Therefore, we have to give preference to any one, either average
precision or average prediction time, and the obvious choice for real time scenario will be
the precision. So we took Dataset-5 as our standard dataset for training purpose.
Conclusions and related future work is discussed in next chapter.

40

6
Conclusions and Future Work

6.1 Conclusions

In this thesis lane change intention prediction problem is addressed using a combination of
discriminative classifier (Support Vector Machine) and Bayesian filter.

The overall approach was tested on almost 100 lane change real-world data collected using
a Lexus experimental platform.

The lane change intention prediction horizon is up to 3.29 seconds with an average prediction
time of 1.3 seconds.

Adding a Bayesian filter on top of the SVM improved the average precision from 0.2857 to
0.7154 with recall of 1, thus increasing the realiability of the system.

Using a Bayesian filter decreased the average prediction time by 0.022 seconds which is
acceptable with such a remarkable improvement on the precision.

Still the precision is not 1 because of some false alarms. The most probable reason for such
false alarms is the fluctuations and jumps of the lane tracker. Sometimes the lane tracker was
not able to detect lanes properly thus giving highly noisy data. The other reasons for such
false alarms can be the limitations of the sensors and of the algorithm.

6.2 Future Work

Testing the proposed with more drivers and in different scenarios (e.g. slow traffic) for better
evaluation.

Implementing the proposed approach using Structural SVM and trying to improve the results.

Improving the lane tracker in order to get better input data which in turn may decrease the
number of false alarms.

Implementing the proposed approach using C++ and integrating it with the Lexus platform.

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Abdourahmane Koita Abderrahmane Boubezoul and Dimitri Daucher. Vehicle trajec-
tories classification using support vectors machines for failure trajectory prediction. In
IEEE ACTEA, pages 486491, 2009.

G. S. Aoude. Threat Assessment for Safe Navigation in Environments with Uncertainty in
Predictability. PhD thesis, Massachusetts Institute of Technology, Department of Aero-
nautics and Astronautics, Cambridge, MA, July 2011.

G. S. Aoude and J. P. How. Using support vector machines and Bayesian filtering for clas-
sifying agent intentions at road intersections. Technical Report ACL09-02, Massachusetts
Institute of Technology, Cambridge, MA, September 2009. Aerospace Controls Lab.

Georges Aoude, Vishnu Desaraju, Lauren H. Stephens, and Jonathan P. How. Behavior
classification algorithms at intersections and validation using naturalistic data. In Intelli-
gent Vehicles Symposium, pages 601-606, 2011.

Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines:
and other kernel-based learning methods. Cambridge University Press, New York, NY,
USA, 2000.

J. Goldbeck and B. Huertgen. Lane detection and tracking by video sensors. In Intel-
ligent Transportation Systems, 1999. Proceedings. 1999 IEEE/IEEJ/JSAI International
Conference on, pages 74 =79, 1999.

C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide to support vector classification.
Technical report, Taipei, 2003.

Till Hiilnhagen, Ingo Dengler, Andreas Tamke, Thao Dang, and Gabi Breuel. Maneu-
ver recognition using probabilistic finite-state machines and fuzzy logic. In Intelligent
Vehicles Symposium, pages 65-70, 2010.

Toru Kumagai, Yasuo Sakaguchi, Masayuki Okuwa, and Motoyuki Akamatsu. Predic-
tion of driving behavior through probabilistic inference. In Proceedings of the Eighth
International Conference on Engineering Applications of Neural Networks, pages 8—10,
2003.

Tzu kuo Huang, Ruby C. Weng, Chih jen Lin, and Greg Ridgeway. Generalized bradley-
terry models and multi-class probability estimates. Journal of Machine Learning Re-
search, 7:2006.

[11] Harry Lum and Jerry A. Reagan. Interactive highway safety design model: Accident pre-
dictive module. In Public Roads, volume 59, United States Department of Transportation
- Federal Highway Administration, 1995.

[12] Hiren M. Mandalia and Dario D. Salvucci. Using support vector machines for lane change
detection. In In Proceedings of the Human Factors and Ergonomics Society 49th Annual
Meeting, 2005.

[13] Joel C. McCall, David P. Wipf, Mohan M. Trivedi, and Bhaskar D. Rao. Lane change
intent analysis using robust operators and sparse bayesian learning. /EEE Transactions
on Intelligent Transportation Systems, 8(3):431-440, 2007.

[14] Daniel Meyer-Delius, Christian Plagemann, and Wolfram Burgard. Probabilistic situation
recognition for vehicular traffic scenarios. In ICRA, pages 459-464, 2009.

[15] Brendan Morris, Anup Doshi, and Mohan M. Trivedi. Lane change intent prediction
for driver assistance: On-road design and evaluation. In Intelligent Vehicles Symposium,
pages 895-901, 2011.

[16] Klaus-Robert Miiller, Alex J. Smola, Gunnar Ritsch, Bernhard Schélkopf, Jens Kohlmor-
gen, and Vladimir Vapnik. Predicting time series with support vector machines. In Pro-
ceedings of the 7th International Conference on Artificial Neural Networks, ICANN 97,
pages 999-1004, London, UK, UK, 1997. Springer-Verlag.

[17] Andrew Ng. Cs229 lecture notes support vector machine. Lecture notes CS229.

[18] Nuria Oliver and Alex P. Pentland. Graphical models for driver behavior recognition in a
smartcar. In Intelligent Vehicles Symposium, 2000.

[19] World Health Organization. The injury chart book : a graphical overview of the global
burden of injuries. World Health Organization, Geneva.

[20] Michaél Garcia Ortiz, Jannik Fritsch, Franz Kummert, and Alexander Gepperth. Behavior
prediction at multiple time-scales in inner-city scenarios. In Intelligent Vehicles Sympo-
sium, pages 1068—1073, 2011.

[21] Igor Paromtchik and Christian Laugier. Automatic parallel parking and returning to traffic
maneuvers. In Video Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 16—
20, 1998.

[22] Dario D. Salvucci. Inferring driver intent: A case study in lane-change detection. In
in Proceedings of the Human Factors Ergonomics Society 48th Annual Meeting, pages
2228-2231, 2004.

[23] Dario D. Salvucci, Hiren M. Mandalia, Nobuyuki Kuge, and Tomohiro Yamamura. Lane-
change detection using a computational driver model. Human Factors, 49(3):532-542,
2007.

[24] Herrn Julien H. Simon. Learning to drive with Advanced Driver Assistance Systems.
Empirical studies of an online tutor and a personalised warning display on the effects of
learnability and the acquisition of skill. PhD thesis, Technischen UniversitAt Chemnitz,
April 2005.

44

[25] Christopher Tay. Analysis of dynamic scenes: application to driving assistance. PhD
thesis, Institut National Polytechnique de Grenoble, France, 2009.

[26] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Sup-
port vector machine learning for interdependent and structured output spaces. In Proceed-
ings of the twenty-first international conference on Machine learning, ICML *04, pages
104—, New York, NY, USA, 2004. ACM.

[27] D. Wipf and B. Rao. Driver intent inference annual report. Technical report, University
of California, San Diego, San Diego, 2003.

